何谓虚数?
字面意义上,便是指虚幻的不存在的数。
举个例子来讲。
像是x210这个二次方程式,它虽然结构简单,可其式子中的x,在整个实数范围内都找不到任何解。
若是一定要找到x的解,那么就需要前往虚数领域中去寻索。
所以,该如何做呢?
很简单。
首先想象一下,在一片无垠无际的虚无间,存在着一条朝左右两侧无限延伸没有任何尽头的直线。
然后在这条直线上找到,或者说选择一个点,定义为0,再将其定义为原点。
随后,再在这一原点0的右侧,定义一定距离外的某一个点,为1。
接着,在1的右侧走过一段与1和0之间完全相等的距离。
停下来,再定义一个点,为2。
以此,无限类推下去。
便可不断推出3、4、5、6……直到无穷。
那么这一条直线上所有与0和1之间,与1和2之间,与2和3之间距离相等的点,就是整数。
而在0和1之间,在1和2之间,在2和3之间的所有点,便是分数与无理数。
最后,在原点0右侧的所有点,无论无理数、分数还是整数,就都尽皆属于正数。
至于在原点0左侧那所有的,与原点0右侧所有的点都完美对称的点,则都是负数。
于是,在这条无限长直线之上的数字,便都为实数。
任何一个实数,若想从一个点到达另一个点,都必须要经过两点之间的所有整数、分数及无理数。
譬如从3到达4,就得经过30001,经过31111,经过31415926……,经过√10,经过33333,经过……总之各种各样共计不可数无穷个数。
由此便不难发现,在这一条代表着所有实数的悠长直线上,除却原点0之外的任何一个点的平方2,其结果都会且只会出现在这一条直线原点0的右侧,也就是正数范畴里。
譬如正数5的平方52,就是25,依然属于正数,在原点0的右侧。
再譬如负数5的平方52,也一样是25,一样属于正数,一样在原点0的右侧。
5与5这一正一负两个截然相反的数,在经历了平方相乘运算过程后,却得到了同样的数,并且同样是正数。
很神奇吗?
当然不神奇啊,正正得正、负负得正、正负得负,这本就是初中一年级便会教的知识点。
那么就可以想像一下,有没有可能存在着这样一个数,它的平方2会出现在原点0的左侧,即负数范畴内呢?
若换一种表达方式,便是一个负数,譬如1,其在存在有「正正得正、负负得正、正负得负」这些数学规则的前提下,可不可以拥有一个平方根,或者说偶数次方根呢?
答案是:可以。
这一运算,如果用数学语言来表达,便是:1i2。
简单来讲,这一数式中的i,就是虚数元。
如果有某一数字中含有i,那么这一数字便是虚数。
可虚数概念体现到整个数学层面,乃至真实世界里,又会是怎样的呢?
疯狂日更中g文案一霉运系统520又有了新宿主,和别的系统不一样,他绑定的宿主大多都是歪瓜裂枣。为了给新人一个下马威,它戴上了自己的大金链子小手表,脸上暗搓搓画上凶狠的刀疤,结果下一秒它就对上了一双...
...
v后努力日万预收文养神本文文案星空之下,最璀璨的是星辰,最绚丽的是萤虫,最荒诞的是罗罹建立在废墟之上的蒸汽朋克之城冒着白色蒸汽的小车有序地在城内的小道上行驶。笛笛鸣叫的钢...
...
...
一个来自农村的女孩,通过自己的努力来到梦想中的大学,却发现现实和自己想象的完全不一样。但是再多的风雨也击不垮自己心中的小太阳,虞以晴不忘初心,用自己的真诚温暖着身边的人,最终收获了友情和爱情。各位友友,快来阅文旗下网站阅读我的更多作品吧!...